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Supplemental Material IV: Ratio Estimator
Properties

Zdravko Velinov, and Kenny Mitchell

Abstract—We discuss convergence rate, bias, progressive estimation and other properties of ratio estimators.

Index Terms—raytracing, color, shading, shadowing, texture.

✦

1 BIAS

Monte Carlo techniques follow the definition of computing the
expected value of a random variable, and as long as the probability
density function correctly matches the distribution of samples
generated by transforming a pseudorandom sequence by a sampling
function, the estimator is going to be unbiased [1].

Moment-based estimators following the framework explained
by Peters et al. [2] use heuristic functions that do not converge to
the correct value, no matter whether we scale the resolution and
increase the number of moments.

Ratio estimators are technically a composite estimator. They
combine the results of multiple estimators to arrive at a value with
improved convergence rate. We will demonstrate it after introducing
some statistical framework to keep the discussion clear. Suppose
that we have a random variable m with expected value µ , we define
expectation as

µ = E [m] =
+∞

∑
i=1

mi · pi =
∫

R
m(x) p(x)dx. (1)

We can similarly define the expected value τ of another random
variable t as τ = E [t]. Ratio estimators essentially represent the
outcome of an unbiased estimator divided by the estimate of related
variable and multiplied by the expected value of the same variable.
Expressed mathematically,

µ =
τ

E [t]
E [m] = E [m] , (2)

The following relation results in an unbiased estimate of m only if
the expected value of the related variable t is not equal to 0 (τ ̸= 0).
If we want to make this estimator avoid this case arithmetically, we
can add an impulse function to both its numerator and denominator,

i(x) =

{
1 x = 0
0 otherwise

(3)

µ =
τ + i(τ)

E [t]+ i(τ)
E [m] = E [m] (4)
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Note, that the outcome of the two estimators have to be computed
independently before combining them in a single ratio estimator,
otherwise bias will be introduced in the computation. We can
demonstrate mathematically that it won’t converge to the correct
value if we directly compute the expectation of the ratio of these
two related random variables,

µ ̸= E
[

τ

t
m
]

(5)

We can go as far as computing the bias of that estimator which is
the difference of the two expected values,

B
(

m,
τ

t
m
)
= E [m]−E

[
τ

t
m
]
= E

[
m− τ

t
m
]

= E
[(

1− τ

t

)
m
]

(6)

Obviously, the estimator in (5) is biases, but we already defined
an estimator that we claim converges asymptotically to the correct
solution (4). We can validate it in the same manner,

B
(

m,
τ + i(τ)

E [t]+ i(τ)
E [m]

)
= E [m]−E

[
τ + i(τ)

E [t]+ i(τ)
E [m]

]
= E

[
m− τ + i(τ)

E [t]+ i(τ)
m
]

= E
[(

τ + i(τ)
E [t]+ i(τ)

−1
)

m
]

= E

[(
����: 1
τ + i(τ)

����: 1
τ + i(τ)

−1

)
m

]
= E [(1−1)m] = 0, (7)

therefore, we prove arithmetically that the ratio estimator in (4) is
unbiased only in the limit. However, when truncating the sequence
the result will deviate from the expected value,

B
(

m,
τ

t̂
m̂
)
= E

[(
1− τ

∑
N
i=0 ti p̂i

)( N

∑
j=0

m j p̂ j

)]
. (8)

The most significant issue here is that directly averaging values
might introduce bias and the result of each estimator must be
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treated separately. If the numerator and denominator are treated
separately, the estimator on average does not lead to bias,

B∗ (m,(τ + i(τ)) m̂, t̂ + i(τ)) =E [m]− E [(τ + i(τ)) m̂]

E [t̂ + i(τ)]

=

(
1− τ

E
[
∑

N
i=0 ti p̂i

]) ·

E

[
N

∑
j=0

m j p̂ j

]
= 0. (9)

However, we use a much weaker requirement with respect to
avoiding bias in the estimator and set certain requirements on the
implementation side. Therefore, we can claim at least asymptotic
convergence, if progressive estimation is carried correctly, which
will be discussed in the following.

2 PROGRESSIVE ESTIMATION

Progressive estimators or renderers in the case of graphics, spread
the computation over multiple iterations. We can achieve progres-
sive estimation by first considering that in practice ratio estimators
combine the result of two estimators at each step. Therefore, our
estimator can be defined as µ∗ : Rn,Rn → Rn,

µ
∗(Et ,Em) =

τ + i(τ)
Et + i(τ)

Em. (10)

We can then define the expectation as a sum of values up to and
past a certain point k,

E [m] = E−,k[m]+E+,k[m]

=
k

∑
i=1

mi · pi +
+∞

∑
i=k+1

mi · pi. (11)

The described estimator generally works, but we will need to split
it into multiple steps which yield plausible intermediate results.
Therefore, we need to normalize the two terms,

E [m] =
k

∑
i=1

pi

(
1

∑i=1 pi

k

∑
i=1

mi · pi

)
+

+∞

∑
i=k+1

pi

(
1

∑
+∞

i=k+1 pi

+∞

∑
i=k+1

mi · pi

)

=

(
k

∑
i=1

pi

)
Ê1,k[m]+

(
+∞

∑
i=k+1

pi

)
Êk+1,+∞[m]

=P1,k Ê1,k[m]+Pk+1,+∞ Êk+1,+∞[m] . (12)

We can take one of those partial terms and use them with the ratio
estimator to perform an estimate with finite number of samples
µ(Ê1,k[t] , Ê1,k[t]). After each iteration we can combine the results
from multiple estimations similarly to (12),

Ê1,k2 [m] = P1,k1 Ê1,k1 [m]+Pk1+1,k2 Êk1+1,k2 [m] . (13)

3 CONVERGENCE OF RATIO ESTIMATORS

In the general case, ratio estimators can be built out of two
uncorrelated distributions. In that case, ratio estimators do not
lead to any variance reduction, but in general they converge to
the correct result, if they are built out of Monte Carlo estimators
(cf. Fig. 2). The probability density function depends on the two
estimators. The most straightforward approach to estimate it is to
build a histogram out of generated samples. The distribution of

errors of a Monte Carlo estimator follows a normal distribution
with expected value µ and standard deviation σ̂m = σm/

√
N. To

generate error samples of ratio estimator, we can use the quantile
function of the normal distribution characterizing the error of each
estimator,

x =
(τ + i(τ))

(
µ + σ̂m

√
2erf−1(2ξ1 −1)

)
τ + σ̂t

√
2erf−1(2ξ2 −1)+ i(τ)

−µ, (14)

where ξ1 and ξ2 are random values drawn from uniform distribution
in range [0, 1], and σt and σm are the standard deviation of each
distribution which is integrated numerically. After generating the
samples, they are binned and then normalized by dividing out the
number of generated samples multiplied by the size of each bin.
Another approach to solve this problem numerically is to solve
the equation for one of the distribution to find the intersection
with a given axis and integrate analytically the other distribution
weighted by the probability density of having a sample at a given
location. For convenience we will substitute the quantile ψ =
G−1(ξ2,τ, σ̂t) = τ + σ̂t

√
2erf−1(2ξ2 −1),

x =
(τ + i(τ))

(
µ + σ̂m

√
2erf−1(2ξ1 −1)

)
ψ + i(τ)

−µ

(ψ + i(τ))(x+µ)

(τ + i(τ))
=
(

µ + σ̂m
√

2erf−1(2ξ1 −1)
)

(ψ + i(τ))(x+µ)

(τ + i(τ))
−µ = σ̂m

√
2erf−1(2ξ1 −1)

1
σ̂m

√
2

(
(ψ + i(τ))(x+µ)

(τ + i(τ))
−µ

)
= erf−1(2ξ1 −1)

erf
(

1
σ̂m

√
2

(
(ψ + i(τ))(x+µ)

τ + i(τ)
−µ

))
= 2ξ1 −1

ξ1 =
1
2
+

1
2

erf
(

1
σ̂m

√
2

(
(ψ + i(τ))(x+µ)

τ + i(τ)
−µ

))
ξ1 = Ξ(x,ψ). (15)

The equation basically expresses the relation: given a sample
from one distribution at a point, what is the mapping to the
other distribution. Thus integrating the probability for each sample
is achieved by drawing a sample at a given location from one
distribution, then remapping it to the other distribution, and
afterwards weighting them by the individual probability of selecting
a sample from both independent distributions,

f (x) =
∫ +∞

−∞

g
(
G−1(Ξ(x,ξ2),µ, σ̂m),µ, σ̂m

)
·

g
(
ψ,τ, σ̂t

)
dψ. (16)

The equation can be further simplified by cancelling the error
function by the quantile,

f (x) =
∫ +∞

−∞

g
(
ψ,τ, σ̂t

)
g
(
(ψ + i(τ))(x+µ)

(τ + i(τ))
,µ, σ̂m

)
dψ. (17)

The second normal distribution can be re-written to transform its
expected value and standard deviation,

f (x) =
∣∣∣∣τ + i(τ)

µ + x

∣∣∣∣∫ +∞

−∞

g
(
ψ,τ, σ̂t

)
·

g
(

ψ,µ
τ + i(τ)

µ + x
− i(τ), σ̂m

∣∣∣∣τ + i(τ)
µ + x

∣∣∣∣) dψ. (18)
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We can then substitute the new expected value and standard
deviation to keep the equation short,

µ
′ = µ

τ + i(τ)
µ + x

− i(τ) =
(τ + i(τ))µ − i(τ)(x+µ)

µ + x

=
τ µ − i(τ)x

µ + x

σ̂
′
m = σ̂m

∣∣∣∣τ + i(τ)
µ + x

∣∣∣∣
f (x) =

σ̂ ′
m

σ̂m

∫ +∞

−∞

g
(
ψ,τ, σ̂t

)
g
(
ψ,µ ′, σ̂ ′

m
)

dψ. (19)

The two normal distributions can be combined into a single one,

f (x) =
σ̂ ′

m

σ̂m
√

σ̂2
t + σ̂ ′2

m

exp

−1
2

τ2 σ̂ ′2
m +µ ′2 σ̂2

t − (τ σ̂ ′2
m +µ σ̂2

t )
2

σ̂ ′
m2+σ̂2

t

σ̂ ′2
m σ̂2

t

 ·

�����������������:1∫ +∞

−∞

g

(
ψ,

τ σ̂ ′2
m +µ σ̂2

t

σ̂ ′2
m + σ̂2

t
,

σ̂t σ̂ ′
m√

σ̂2
t + σ̂ ′2

m

)
dψ. (20)

The normal distribution obviously integrates to 1,

f (x) =
σ̂ ′

m

σ̂m
√
(σ̂2

t + σ̂ ′2
m )2π

·

exp

−1
2

τ2 σ̂ ′2
m +µ ′2 σ̂2

t − (τ σ̂ ′2
m +µ ′ σ̂2

t )
2

σ̂ ′2
m +σ̂2

t

σ̂ ′2
m σ̂2

t


=

σ̂ ′
m

σ̂m
√
(σ̂2

t + σ̂ ′2
m )2π

·

exp
(
−1

2
(σ̂ ′2

m + σ̂2
t )(τ

2 σ̂ ′2
m +µ ′2 σ̂2

t )− (τ σ̂ ′2
m +µ ′ σ̂2

t )
2

σ̂ ′2
m σ̂2

t (σ̂
′2
m + σ̂2

t )

)
=

σ̂ ′
m

σ̂m
√
(σ̂2

t + σ̂ ′2
m )2π

exp
(
− (τ −µ ′)2

2(σ̂2
t + σ̂ ′2

m )

)
. (21)

Expanding,

f (x) =
∣∣∣∣τ + i(τ)

µ + x

∣∣∣∣ 1√(
σ̂2

t + σ̂2
m

(
τ+i(τ)

µ+x

)2
)

2π

·

exp

−1
2

(
τ − τ µ−i(τ)x

µ+x

)2(
σ̂2

t + σ̂2
m

(
τ+i(τ)

µ+x

))


f (x) =
|τ + i(τ)|√(

(µ + x)2 σ̂2
t +(τ + i(τ))2 σ̂2

m
)

2π

·

exp

(
−1

2
((�µ + x)τ − (��τ µ − i(τ)x))2(
(µ + x)2 σ̂2

t +(τ + i(τ))2 σ̂2
m
))

=
|τ + i(τ)|√(

(µ + x)2 σ̂2
t +(τ + i(τ))2 σ̂2

m
)

2π

·

exp

(
−1

2
x2 (τ + i(τ))2(

(µ + x)2 σ̂2
t +(τ + i(τ))2 σ̂2

m
))

=
1√((

µ+x
τ+i(τ)

)2
σ̂2

t + σ̂2
m

)
2π

·

exp

−1
2

x2(
µ+x

τ+i(τ)

)2
σ̂2

t + σ̂2
m


=g

x,0,

√(
µ + x

τ + i(τ)

)2

σ̂2
t + σ̂2

m

 (22)

Finally we have a skewed normal distribution representing the
distribution of errors of a ratio estimator. When σ̂t → 0, it falls
back to regular Monte Carlo error as expected,

lim
σ̂t→0

f (x) = g(x,0, σ̂m) =
1

σ̂m
√

2π
exp
(
−1

2
x2

σ̂2
m

)
(23)

The distribution of errors is clearly skewed, i.e. shows dis-
tribution bias, but its standard deviation decreases with more
samples and asymptotically converges to the correct result in the
limit (cf. Fig. 2). The observed behavior is valid for relatively
independent distributions where the unoccluded term does not
provide good initial estimates. When occlusion is relatively low,
the ratio estimator leads to formation of off-center error side lobes
(cf. Tab. 3). Lower values means that it estimates the components
as darker than expected. As more samples are accumulated, it tends
to switch to overestimating values by having errors introducing
slightly brighter pixels. We truncated the distribution along the
y axis, so the probability of really low error values are not
shown. What has to be outlined is that those side lobes can have
much lower error than the initial error of estimators based on
ray marching. The estimator has clear advantage in cases when
unoccluded areas are still present in the view. WVDS, however,
performs consistently better than regular distance sampling which
introduces more errors around corners. These images were built
by comparing the error for each color channel of each pixel in
128 images at 200x150 resolution with different initial seeds. The
random number generator is a relatively simple hashing function
and we use single-precision floating-point variables (32-bit) with
the mathematics functions bundled in the C library as part of the
MSVC C++ compiler. Better agreement with Monte Carlo error
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can be certainly achieved at higher precision and using high-quality
random number generator, but most real-world implementations are
not going to dedicate the extra budget for relatively minor precision
improvements.
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Fig. 1. Monte Carlo (MC) and Ratio estimator (RE) errors depending on the number of samples (analytic, independent distributions). Horizontal axis
is probability density and vertical axis represents error in units of radiance.
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Fig. 2. Stochastic validation of Ratio estimator (RE) errors depending on the number of samples (independent distributions). Horizontal axis is
probability density and vertical axis represents error in units of radiance.
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TABLE 1: Converge behavior.

Sphere
Size

Rendering (Reference) RM
(Convergence)

REDS
(Convergence)

0.5

1

1.5

2

2.5
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3

3.5
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TABLE 2: Converge behavior.

Sphere
Size

Rendering (Reference) DS
(Convergence)

WVDS
(Convergence)

0.5

1

1.5

2

2.5
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TABLE 3: Converge behavior.

Grid
Size

Rendering (Reference) RM
(Convergence)

REDS
(Convergence)

0.5

1

1.5

2

2.5
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TABLE 4: Converge behavior.

Grid
Size

Rendering (Reference) DS
(Convergence)

WVDS
(Convergence)

0.5

1

1.5

2

2.5
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