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Supplemental Material II: Integration algorithms
Zdravko Velinov, and Kenny Mitchell

Abstract—The main text compares many algorithms that are well known in the graphics literature. This supplemental material provides
the algorithms used for ray marching, Monte Carlo integration with distance sampling and different variants of ratio estimators.
Additionally, it provides algorithms for PDF and sampling that can be used in traditional path tracing frameworks.

Index Terms—raytracing, color, shading, shadowing, texture.

✦

1 INTRODUCTION

T HE aim of this document is to give additional details regarding
implementation of well-known algorithm that we compared

against in the main text. Ray marching and distance sampling
are the two algorithms implemented for comparison purposes.
Additionally, ratio estimator is further discussed in ray marching
and distance sampling scenarios. Those algorithms combine known
techniques with our analytic unoccluded integral computation.

Finally, in path tracing frameworks it is crucial to implement
both functions for generating new samples and probability density
functions, required to combine different sampling strategies. Those
are derived for a given starting point in space and a set of incident
and outgoing light vectors.

2 SINGLE-SCATTERING INTEGRATION USING RAY
MARCHING

Algorithm 1 Single-scattering integrator using ray marching
algorithm

procedure L(ω̃i, ω̃o, tS)
tC,B←min(tS, tC,E)
Ttotal← 0
for k← 1 to Nsample do

t← ξ (k/Nsample) tC,B
p̃← p̃o− t ω̃o
d← IntersectBox

(
p̃, ω̃i

)
Tk←V (p̃)e−σt (t+d)

Ttotal←Ttotal +Tk
end for
L← tC,B

Nsample
σs f (ωi,ωo)Ttotal Li

return L
end procedure

Ray marching spreads the samples equidistantly along the
camera ray (t = ξ (k/Nsample) tC,B). The main details of the algo-
rithm are shown in Alg. 1. Samples are generated within the
range of the end of the ray tC,E and distance to the closest
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surface visible along the camera ray tS. At the start of the loop
the integral over transmittance is initialized to zero (Ttotal = 0).
The integrator is executed for a finite number of samples Nsample.
Samples are generated by drawing from uniform distribution in
the range [0,1] and spreading them according to the distance to
the constrained end of the ray (t = ξ (k/Nsample) tC,B). The position
is computed by multiplying the generated distance by the view
vector (−ω̃o) and offsetting the camera origin p̃o (p̃ = p̃o− t ω̃o).
The exit point from the position following the incident light
ray ω̃i is computed using a slab intersection test as outlined in
the main text (IntersectBox

(
p̃, ω̃i

)
). The transmittance of each

sample is weighted by the visibility (Tk = V (p̃)e−σt (t+d)). Each
iteration ends with accumulation of the integral over transmittance
(Ttotal←Ttotal +Tk). In this integrator the probability of selecting
a segment is one over the total distance which results in the first
weight (tC,B/Nsample). The second weight is the phase function
( f (ωi,ωo)) multiplied by the scattering coefficient σs. The final
result is assembled by multiplying by the uniform incident light
radiance Li (L = (tC,B/Nsample) f (ωi,ωo)Ttotal Li).

3 MULTIPLE-SCATTERING INTEGRATION USING RAY
MARCHING

In multiple-scattering scenarios, the algorithm must accumulate
the throughput along multiple path segments and connect path
segments to the light source and surrounding medium. The
throughput at the end of each path segment is characterized by the
transmittance, phase function and scattering coefficient,

Lpath = σs f (ωi,ωo) exp(−σt t)Lnext. (1)

The next step is to apply the PDF to avoid bias when estimating
the final value. The PDFs of both the distance (ray marching) and
phase sampling functions must be applied separately as two distinct
uncorrelated events to derive an unbiased estimate,

L′path =
Lpath

PDFdistance(p,ωo)PDFphase(ωi,ωo)

=
σs f (ωi,ωo) exp(−σt t)

1
tC,B

f (ωi,ωo)
Lnext

= tC,B σs exp(−σt t)Lnext (2)
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Algorithm 2 Single-scattering integrator using distance sampling
procedure L(ω̃i, ω̃o, tS)

tC,B←min(tS, tC,E)
Ttotal← 0
for k← 1 to Nsample do

r← ξ (k/Nsample)
t←− 1

σt
log(1− (1− e−σt tC,B) r)

p̃← p̃o− t ω̃o
d← IntersectBox

(
p̃, ω̃i

)
Tk←V (p̃)e−σt d

Ttotal←Ttotal +Tk
end for
L← 1−e−σt tC,B

Nsample
σs f (ωi,ωo)

Ttotal
σt

Li

return L
end procedure

4 SINGLE-SCATTERING INTEGRATION USING DIS-
TANCE SAMPLING

Distance sampling is derived to generate samples only within the
medium by normalizing against the highest value of the integral
over transmittance along the camera ray segment,

r =
∫ t

0 e−σt tdt∫ tC,B
0 e−σt tdt

=
1
σt
(1− e−σt t)

1
σt
(1− e−σt tC,B)

=
1− e−σt t

1− e−σt tC,B
. (3)

Inversion is performed in a similar way as our importance sampling
strategy, but it ends up not having components dependent on the
distance from the camera ray to the medium boundary,

1− e−σt t =
(
1− e−σt tC,B

)
r

e−σt t = 1−
(
1− e−σt tC,B

)
r

t =− 1
σt

log
(
1−
(
1− e−σt tC,B

)
r
)
. (4)

This is a well known result that can be found in books and courses
regarding volume rendering [1], [2]. However, it can be easily
shown that distance sampling can be derived as a subset of our
sampling algorithm when the distance to the edge is constant
(dE,S = dE,E) and the starting distance is 0 (tC,S = 0),

t = tC,S−
1

σt c
log(1− (1−Eu)r)

t = tC,S−
1

σt

(
1+����dE,E−dE,S

tC,E−tC,S

) .
log

(
1−

(
1− e

−σt

(
1+����dE,E−dE,S

tC,E−tC,S

)
(tC,B−tC,S)

)
r

)
t =��tC,S−

1
σt

log
(

1−
(

1− e−σt (tC,B−��tC,S)
)

r
)

t =− 1
σt

log
(
1−
(
1− e−σt tC,B

)
r
)

The integration algorithm incorporating distance sampling
is shown in Alg. 2. It partially cancels the transmittance term
(Tk = V (p̃)e−σt d) and results in a constant corrective term
proportional to the integral over transmittance along the camera

ray line segments (1− e−σt tC,B ). Everything else is similar to the
ray marching algorithm.

5 MULTIPLE-SCATTERING INTEGRATION USING
MONTE CARLO WITH DISTANCE SAMPLING

Similarly to multiple-scattering with ray marching the individual
PDFs must be applied to compute an unbiased estimate when
combining contribution for each path segment,

L′path =
Lpath

PDFdistance(p,ωo)PDFphase(ωi,ωo)

=
σs f (ωi,ωo)e−σt t

σt
e−σt t

1−e−σt tC,B f (ωi,ωo)
Lnext

=
σs

σt
(1− e−σt tC,B)Lnext (5)

6 SINGLE-SCATTERING INTEGRATION USING RATIO
ESTIMATOR WITH EQUIDISTANT SAMPLING

Algorithm 3 Ratio estimator with equidistant sampling single-
scattering integration algorithm

procedure L(ω̃i, ω̃o, tS)
tC,B←min(tS, tC,E)
Ttotal← 0
Tu← 0
for k← 1 to Nsample do

t← ξ (k/Nsample) tC,B
p̃← p̃o− t ω̃o
d← IntersectBox

(
p̃, ω̃i

)
τ ← e−σt (t+d)

Tk←V (p̃)τ

Ttotal←Ttotal +Tk
Tu←Tu + τ

end for
L← σs f (ωi,ωo)Tbox(ω̃i, ω̃o, tS)

Ttotal
Tu

Li
return L

end procedure

The main difference compared to previous algorithms is that
it accumulates both an occluded Ttotal and unoccluded term
Tu (Alg. 3) and at the end of the computation, it multiplies
the ratio term by our analytic unoccluded radiance computation
algorithm (Tbox(ω̃i, ω̃o, tS)Li)). In the limit, the unoccluded term
will approach the analytically computed result (Tu tC,B/Nsample→
Tbox(ω̃i, ω̃o, tS)Li)) and completely cancels it out, leading to
asymptotically converging to unbiased solution single-scattering
estimate. The concept extends to multi-scattering integrators with
Russian Roulette.

7 SINGLE-SCATTERING INTEGRATION USING RATIO
ESTIMATOR WITH DISTANCE SAMPLING

The main premise of this ratio estimator algorithm (Alg. 4) is the
same as the previously explained ratio estimator algorithm (Alg. 3).
However, it generates samples according to a distance sampling
function.
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Algorithm 4 Single-scattering ratio estimator using distance
sampling

procedure L(ω̃i, ω̃o, tS)
tC,B←min(tS, tC,E)
Ttotal← 0
Tu← 0
for k← 1 to Nsample do

r← ξ (k/Nsample)
t←− 1

σt
log(1− (1− e−σt tC,B) r)

p̃← p̃o− t ω̃o
d← IntersectBox

(
p̃, ω̃i

)
τ ← e−σt d

Tk←V (p̃)τ

Ttotal←Ttotal +Tk
Tu←Tu + τ

end for
L← σs f (ωi,ωo)Tbox(ω̃i, ω̃o, tS)

Ttotal
Tu

Li
return L

end procedure

8 MULTIPLE-SCATTERING USING WHOLE VOLUME
DISTANCE SAMPLING

Following the general principle of applying the PDF of the distance
and phase sampling strategies, the contribution for each segment
can be derived,

L′path =
Lpath

PDFdistance(p,ωo)PDFphase(ωi,ωo)

=
σs f (ωi,ωo)e−σt t

e−σt (t+d)

Ttotal
f (ωi,ωo)

Lnext

= σs
Ttotal

e−σt d Lnext (6)

9 ALTERNATIVE SAMPLING ALGORITHMS

Algorithm 5 Algorithm for sampling proportional to unoccluded
radiance in a box section illuminated uniformly by a light source

procedure Shist(ω̃i, ω̃o, tS,r)(
Ttotal T K

)
= Tbox(ω̃i, ω̃o, tS)

H0← 0
for k← 1 to 3 do

Gk←Tk/Ttotal
Hk← ∑

k
i=1 Gi

Dk←

{
1/Gk Gk > 0
1 otherwise

Mk←−Hk−1Dk
end for
r← ξ (k/Nsample)
s← step(H1,r)+ step(H2,r)
rs← r Ds +Ms

t←

{
− log(1−Ks,1 r)

Ks,2
|Ks,2|> ε ∧Ks,3 > ε

Ks,3r otherwise
t← t +Ks,4
return

(
t Ttotal

)
end procedure

Traditional path tracing renderers require a separate sampling
and PDF function. The sampling function is derived similarly to the

final optimized Monte Carlo algorithm, but with a single sample
taken by the function (Alg. 5). The sampling function provides both
the distance and pre-multiplied transmittance by the PDF (Ttotal)
which is a common way of optimizing the integration framework.

Algorithm 6 Computing PDF of a sample proportional to unoc-
cluded radiance in a box section illuminated uniformly by a light
source

procedure PDF(ω̃i, ω̃o, tS, t)
dE,S← dL
tC,S← 0
p̃edge← p̃L
for k← 1 to 3 do(

p̃k w̃k
)
← ComputeCorner(p̃prev)(

dE,E tC,E
)
← DistanceToCorner(p̃k, w̃k)(

Tk Kk
)
←Ttrapezoid (tC,S, tC,E ,dE,S,dE,E)

tC,S← tC,E
if tC,S ≤ t ≤ tC,E then

τ ← e
−σt

(
t+dE,S+(t−tC,S)

dE,E−dE,S
tC,E−tC,S

)
end if
dE,S← dE,E

end for
Ttotal← ∑

3
k=1 Tk

return τ/Ttotal
end procedure

The PDF (Alg. 6) is computed as the transmittance τ at a given
distance t divided by the integral over the unoccluded transmittance
in the box section Ttotal. The algorithm executes a loop over all
segments until the distance falls within a given segment (tC,S ≤
t ≤ tC,E ). At that segment the transmittance is evaluated following
Beer’s law,

τ = e
−σt

(
t+dE,S+(t−tC,S)

dE,E−dE,S
tC,E−tC,S

)
(7)

Everything else is computed as explained in the main text [3].

10 SAMPLING MULTIPLE LIGHT SOURCES

Shirley and Wang [4] express the integral over radiance contributed
by all light sources in a Monte Carlo sense as a sum of individual
terms weighted by their respective PDF,

L =

Nlight

∑
i=0

Li ≈
Nlight

∑
i=0

Li(X)

PDFi(X)
. (8)

They further outline that each PDF is actually a product of the
PDF of selecting each light source and given light sample. Their
suggestion is that in the simplest case, it can be as simple as
selecting one source at random from the set, which corresponds to
a probability density function 1/Nlight, however, they instead advice
to sample according to the light source size, intensity, distance or
any other possible parameters that might affect the computation.
However, in our case, we can sample proportional to the unoccluded
radiance which is a more concrete example of a good estimator
which covers participating media which is a step over what is
shown in the original paper. We support that claim with example
in our main text [3]. The weights are expressed as the integral over
transmittance of each light source divided by the total transmittance
over all segments,

PDFi(X) =
Tboxi

∑
Nlight
i=0 Tboxi

. (9)
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As it is expected, if the contribution is equal for all light sources, it
reduces to 1/Nlight, however in most cases that won’t be true
and sampling will be proportional to the expected maximum
contribution of each light source, resulting in variance reduction.

11 EXTENDING PAST RECTILINEAR BOXES

Since constructing most of the integral solutions requires projection
operations and each segment is relatively independent from its
neighbors. It is possible to construct the integral equation by
directly intersecting the medium, however, more care will be
required to keep the computation numerically stable in corner cases.
Alternatively, Kuijper et al. [5] proposed an algorithm which is
guaranteed to terminate on convex shapes. Intersecting triangles can
be performed individually or against a bounding volume hierarchy.
The intersection between the light-view plane and a bounding box
can be expressed by constraining it between the starting and ending
light plane and checking whether the box lies on both sides of the
light-view plane. Then the bounding box is definitely intersected
by the plane and its content can potentially contribute to the final
radiance. Refer to Alg. 7 for more details. The bounding box
is defined by its three axes ax, ay and az. Operations follow as
already explained. Having a triangle selected for intersection. the

Algorithm 7 Intersection between the light-view plane and Ori-
ented Bounding Box

procedure LightViewOBBIntersectionTest(ωi,ωo,po, tS, tC)
tOBB← |ax · ñl |+ |ay · ñl |+ |ay · ñl |
torg← tOBB−po · ñl
if torg < 0 then

return False
end if
tend← (po−min(tC, tS) ·ωo) · ñl + tOBB
if tend > 0 then

return False
end if
torg,lv← po ·nlv
tOBB,lv← |ax ·nlv|+ |ay ·nlv|+ |ay ·nlv|
if torg,lv− tOBB,lv < 0∧ torg,lv + tOBB,lv ≥ 0 then

return True
end if
return False

end procedure

objective is to find the projected segment of the camera ray on the
triangle that falls within the triangle. First the triangle edge vectors
are computed e0, e1, e2. Then the triangle normal n and distance
vector of the projected line segment is computed d, which allow
to project the beginning and end of the camera ray on the triangle
plane. The next step is to truncate the projection to the triangle
or discard the segment altogether if it is outside of the triangle.
The basic procedure involves first constructing each normal vector
perpendicular to the triangle plane and pointing inside the space
enclosed by the triangle and perpendicular to each edge. We will
call them edge plane vectors. Then we project the offset between
the vertex of each triangle edge on that normal and the direction
between the starting and end point of the segment. If the sign
of the projection of the direction between the two points and the
edge plane vector is negative and they need to move in positive
direction to enter the triangle, then movement will make the line
segment longer, and we consider that case as a failure to contain

the projected line segment within the triangle. We terminate the
process in that case. Otherwise, we advance the point by the ratio
of the projected offset and the projection of the direction vector. We
truncate it, so that they don’t result in increasing the line. We repeat
the same procedure with the inverse direction between the ends of
the line segments. After successfully completing the procedure for
all edges, we then truncate the point to not overshoot the length
of the line segment, thus producing the two ends of the projected
line segment s′0 and s′1. We can now project back on the view
vector and construct a trapezoid segment. The basic step involve
projecting to find the new beginning and end distances along the
view vector tC,S and tC,E . From them, the distance to the projected
line segment can be found by projecting their corresponding points
on the view vector and then on the incident light vector. The
computation afterwards continues in the same manner as the box
using the algorithms for computing the integral over transmittance
enclosed in a trapezoid section Ttrapezoid and sampling according
to our algorithm Ss.

Algorithm 8 Intersection between the light-view plane and Ori-
ented Bounding Box

procedure ComputeTrapezoidTriangleRay(ωi,ωo,po, tS)
e0← v1−v0
e1← v2−v1
e2← v0−v2
d←−min(tC, tS)ωo
n← e2× e0
s0← po +ωo

(v0−po)·n
ωo·n

s1 = po +d+ωo
(v0−po−d)·n

ωo·n
for i← 1 to 3 do

τi← n× ei
h← d · τi
g← (s0−vi) · τi
if h < ε ∧g > ε then

return False
end if
s′0← s0 +max(0,max(0,g)/h)d
h←−h
g← (s1−vi) ·n
if h < ε ∧g > ε then

return False
end if
s′1← s1 +max(0,max(0,g)/h)d

end for
s′0← s0 +dmin(1,(s′0− s0) · d

|d|2 )

s′1← s1 +dmin(1,(s′1− s1) · d
|d|2 )

tC,S←
(po−s′0)·ñl

ωo·ñl

tC,E ←
(po−s′1)·ñl

ωo·ñl
dE,S← (s′0− (po−ωo tC,S)) ·ωi
dE,E← (s′1− (po−ωo tC,E)) ·ωi
return

(
True tC,S tC,E dE,S dE,E

)
end procedure

12 AVOIDING UNBOUNDED MEMORY REQUIRE-
MENTS

One possible issue is that memory requirements can grow po-
tentially unbounded. In practice, it is completely avoidable as
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long as there is access to a pseudorandom number generator.
Given a set of variables that we want to sample proportional
to their total contribution, we can take two variables at each step
- one from a previous step and another from the current step.
If we compare the variable in the current step against the total
accumulated contribution so far and it is below that threshold, we
can replace the variable from the previous step, otherwise, we
keep the variable from the previous step. We can thus express this
relation as inequality

P(Cn)< ξ (x)
Cn

∑
n
i=1 Ci

< ξ (x), (10)

where we outline the contribution at the current step as Ci. The
relationship above works because for the variables from a previous
step we have

Pn(Ck|k < n) =
Ck

∑
k
g=1 Cg

n

∏
j=k+1

∑
j−1
m=1 C j

∑
j
h=1 C j

. (11)

Basically, it cancels the denominator at each step from the previous
one. Note, that this probability approaches 1 which will result in
worse floating-point precision. Therefore, the probability of the
current variable is to be preferred. The same framework can be
used both for sampling segments and for selecting luminaires.
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